

Expert Review of Medical Devices

ISSN: 1743-4440 (Print) 1745-2422 (Online) Journal homepage: www.tandfonline.com/journals/ierd20

Cataract surgery: historical devices, modern innovations, and future perspectives

Sana Nadeem

To cite this article: Sana Nadeem (2024) Cataract surgery: historical devices, modern innovations, and future perspectives, Expert Review of Medical Devices, 21:11, 991-994, DOI: 10.1080/17434440.2024.2419477

To link to this article: https://doi.org/10.1080/17434440.2024.2419477

EDITORIAL

Cataract surgery: historical devices, modern innovations, and future perspectives

Sana Nadeem

Department of Ophthalmology, Foundation University Medical College/Fauji Foundation Hospital, Rawalpindi, Islamabad, Pakistan

ARTICLE HISTORY Received 29 May 2024; Accepted 17 October 2024

KEYWORDS Cataract; cataract surgery; phacoemulsification; lens; device; femtosecond laser; intraocular lens; blindness

1. Introduction

Cataract is the most prevalent cause of reversible blindness and it is defined as loss of transparency of the crystalline lens [1,2]. The World Health Organization (WHO) has estimated the global occurrence of cataract to be 65.2 million, with the majority being in developing countries [3]. The age-standardized prevalence rate of visual impairment caused by cataract was 1207.9 per 100 000 people in 2019 with a 5% increased prevalence in the past 29 years according to a report by Global Burden of Disease Study 2019 [4,5]. Cataract has a long list of etiologies and may be congenital or acquired. Age-related cataract is the most common with multiple factors like ultraviolet light exposure, poor nutrition, diabetes, smoking, alcohol, and severe dehydration accelerating it. Trauma, toxins, drugs, radiation, and systemic diseases being other important causes [1-5].

The only therapy for clouding of the lens or cataract is surgical removal of part of the anterior capsule, cortex, and nucleus, and implantation of an intraocular lens (IOL) to provide refractive power, hence improving the quality of life (QoI) of individuals suffering from it. With an estimated 25 million operations performed worldwide each year, cataract surgery ranks second in terms of surgical procedures performed worldwide [1-4]. This editorial will outline the devices used for cataract surgery in the past, present, and what do we expect in the future.

2. History of cataract surgery: device evolution from the beginnings to the current standard of practice

Historically, the earliest known procedure for cataract removal dates back to 800 BCE, couching, where a sharp needle via the pars plana was used to dislocate the lens into the vitreous, usually without anesthesia or proper asepsis with many associated complications: inflammation, glaucoma, posterior synechiae, capsular opacification, pupillary block, and endophthalmitis [2,6,7] (Figure 1).

The first known extracapsular cataract extraction (ECCE) was performed by Jacques Daviel in mid 1700s in which the cataract was removed by an incision in the lower cornea, puncturing the anterior capsule, and cortex removal by curettage [2,6,7].

Intracapsular cataract extraction (ICCE) was first devised by Samuel Sharp in 1753 using his thumb to extract the whole lens with its capsule after zonule fracture. ICCE later evolved with accompanying devices like the muscle hook for zonular disruption, the capsular forceps; the suction erysiphake, and eventually the cryo probe [2,6,7]. ICCE was associated with many complications in addition to aphakia. Modern day ICCE is limited to severely subluxated lenses where conventional surgery is impossible [2,8].

Sutures in cataract surgery were used for the first time in 1865 but got mixed reviews from primitive surgeons. General anesthesia was avoided by most and topical anesthesia was introduced in 1884 [6].

In 1965, Charles Kelman proposed that ultrasonic dental drills for scaling purpose could be used to fragment the lens nucleus via a small incision. He subsequently performed the first phacoemulsification. In the 1970s and 1980s, with the development of modern devices for phaco, a continuous curvilinear capsulorrhexis (CCC), and invention of foldable IOLs, the modern day phacoemulsification found its way into the heart of cataract surgeons [1,2,6-9].

The first intraocular lens (IOL) device was created by Sir Harold Ridley after observing that windshield fragments were considerably inert in traumatized eyes of injured World War II pilots [1]. He subsequently designed and implanted a biconvex polymethyl methacrylate (PMMA) disc to counter aphakia, in 1949 after ECCE. Better IOLs were later reintroduced in mid 1970s to 1980s, the Ridey IOL being prone to glaucoma, uveitis, and dislocation [2]. The IOL has revolutionized the lives of cataract patients and has evolved over the years; with anterior chamber IOLs being developed in the 1950s, to iris-supported IOLs in 1971; to foldable IOLs (acrylic or silicon) in 1984 [1,2,7].

Capsular tension rings (CTRs) were first developed in 1991 in Japan to counter zonular weakness, which can cause numerous problems including capsular tears, vitreous prolapse, nucleus drop, IOL decentration, subluxation and dislocation. These are implanted in the capsular bag to provide support and IOL centration. Cionni, Morcher, and Ahmed are different designs to provide capsular stability [1,2,9].

Iris hooks were also used first in 1991 for expanding small pupils to aid in cataract extraction. Pupil expansion rings like Graether pupil expander, Siepser's hydrogel ring, Morcher PMMA ring, Milvella, and Malyugin also have been evolved to achieve a larger pupil size for ease of surgery [10]. Manual small-incision cataract surgery (MSICS) introduced in 1994, is similar to ECCE but with a smaller, scleral self-sealing incision (6-8 mm),less astigmatism, and manual nuclear

Figure 1. Demonstrates the couching procedure. (Reproduced from System of Ophthalmology; vol II, Duke-Elder S, Diseases of the Lens and Vitreous; Glaucoma and Hypotony, Copyright Mosby, Elsevier 1969).

fragmentation. Often called the poor-man's phaco and is popular in small centers in low to moderate income countries with non-availability of the phaco machine [1,2,7].

Table 1 describes cataract surgery evolution and evolving techniques.

Ophthalmic viscosurgical devices (OVDs) found their place in cataract surgery in 1970s when sodium hyaluronate 1% was used to maintain the anterior chamber, protect the endothelium, iris, and posterior capsule, and to provide a controlled, smooth surgical manipulation and prevent globe deflation. These are clear, gel-like materials with elastic and viscous properties, that have evolved tremendously over the years and are currently classified as cohesive, dispersive, or viscoadaptive [1,2].

3. Modern innovations in cataract surgery

Modern phacoemulsification provides a small incision (1.9–3.2 mm), a stable ocular environment during surgery, lesser complications than ICCE and ECCE, and the insertion of a foldable IOL. The phacoemulsification technique involves creation of a continuous curvilinear capsulorrhexis of about 5.5 mm either with a cystitome or Utrata forceps which are cheap and also used in developing countries. However, a more precise capsulotomy which is accurate in size, completely circular in shape, centered over the IOL with adequate overlap and less chance of IOL tilt or decentration is achieved with the femto- or nano-second lasers, plasma Fugo blade, pulsed-electron avalanche knife, CAPSULaser selective laser capsulectomy, or precision pulse capsulotomy (Zepto), which are modern innovations to achieve perfection and stability in current cataract surgery [2,11].

Nucleus removal techniques in phacoemulsification are varied and depend on surgeon preference, with carousel, chip and flip, or phacofracture techniques involving divide-and-conquer (Gimbel), four-quadrant pregrooved (Shepherd), nonstop chop (Nagahara), stop-and-chop (Koch) or double chop (Kammann)

techniques [2]. Alternative approaches to cataract surgery used in conjunction with phacoemulsification are the laser photolysis in which a *Q-switched Nd:YAG laser system* developed in 2000 uses a system to generate 200–400 ns shock waves against a titanium handpiece to fragment the lens nucleus [1,2].

The clear corneal incision has paved the way for *refractive correction* in phacoemulsification, with a smaller incision, placing the incision 'on-axis,' limbal relaxing incisions, astigmatic keratotomy, all aiding in reducing astigmatism [1,2,7,8]. In addition to regular monofocal IOLs, modern-day IOLs include the toric IOLs invented in 1992, multifocal IOLs in the 1990s, and accommodating IOLs in 2000. These correct astigmatism and presbyopia respectively. Extended depth of focus (EDOF) IOLs, potentially accommodative IOLs, and the light-adjustable lens (LAL) are newer technologies to treat various refractive errors. Refractive indexing and softening of IOLs with the femtosecond laser to correct refractive error are also being evolved [2,7,8].

Femtosecond laser assisted cataract surgery (FLACs) uses the Nd:glass lasers to create focused, ultrashort pulses (10–15 s) at a 1053 nm wavelength to photodisrupt tissue by creation of cavitation bubbles. This laser can be used to create corneal incisions, relaxing incisions, capsulotomy, and lens fragmentation, which can be later removed by phaco. It was performed in the first human eye in Hungary in 2008, and it integrates artificial intelligence (Al), and promises to revolutionize cataract surgery, in terms of precision, reproducibility, accuracy, safety, and limiting collateral damage and inflammation [1,2,8,12,13].

Ophthalmic microscopes have evolved tremendously since their first use in 1946. Improvement in microscope design has provided variable illuminations, magnifications, red reflex, beam splitting, depth of field, less phototoxicity, precise motorized zoom focus, ergonomics, and teaching facility; they are a necessity for intraocular surgery. Newer stereo coaxial systems with Xenon light provides natural light, whereas the light emitting diode (LED) source provides

Table 1. Cataract surgery evolution and devices.

Year	Technique/Device	Region	Surgeon
800 BCE	Couching	India	Sushruta
1015	Needle aspiration	Iraq	Unknown
1100	Needle aspiration	Syria	Unknown
1500	Couching	Europe	Unknown
1745	ECCE inferior incision	France	Daviel
1753	ICCE by thumb expression	England	Sharp
1860	ECCE superior incision	Germany	von Graefe
1880	ICCE by muscle-hook zonulysis and lens tumble	India	Smith
1900	ICCE by capsule forceps	Germany	Verhoeff Kalt
1940	ICCE capsule suction erysiphake	Europe	Stoewer I. Barraquer
1949	ECCE posterior chamber IOL and operating microscope	England	Ridley
1951	Anterior chamber IOLs	ltaly Germany	Strampelli Dannheim
1957	1957 ICCE by enzyme zonulysis	Spain	J. Barraquer
1961	ICCE by capsule cryoadhesion	Poland	Krwawicz
1967	ECCE by phacoemulsification	United States	Kelman J. Shock
1975	Iris-pupil supported IOLs	Netherlands	Binkhorst Worst
1984	Foldable IOLs	United States South Africa	Mazzocco Epstein
1991	Capsular tension ring	Japan	Nagamoto Hara
1991	Iris hooks/retractors	USA	De Juan Hickingbotham
2000	Q-switched Nd:YAG laser	Europe USA	Jack Dodick
2008	Femtosecond laser assisted cataract surgery (FLACs)	Hungary	Zoltan Nagy

ECCE, Extracapsular cataract extraction; ICCE, intracapsular cataract extraction; IOL, intraocular lens; Nd: YAG, neodymium yttrium aluminum garnet. (Adapted from Ophthalmology, 6th edition, Yanoff M, Duker JS, Indications for Lens Surgery/Indications for Application of Different Lens Surgery Techniques, p 332, Copyright Elsevier, 2023).

variable light, excellent retroillumination, and less heat production. Eye tracking systems provide perfect centration, size, and position for automated cataract procedures [2,14].

4. Future perspectives in cataract therapy

The future of cataract surgery is ever promising as newer technology is introduced in various countries on a regular basis. The Capsulaser device (Excel-Len) is a new laser device in the pipeline for capsulotomy without the need for docking. Aperture continuous thermal capsulotomy (CTC) is currently being developed to deliver a millisecond of thermal energy for CCC. The development of premium IOLs will continue in the quest of perfect vision at all distances, improved contrast, reduced glare and aberrations. Fluid filled IOLs, small aperture, pinhole IOLs, modular IOLs, and mixed EDOF/multifocal IOLs are also being produced. Newer OVDs are being developed to provide smooth and safer surgery. Al integrated biometry formulas to minimize residual refractive errors are continuously being studied and improved. Compact and faster phaco systems, FLACs, Femtomatrix®, are being developed to minimize ultrasonic energy and heat. Development of drugs to treat cataract without surgery are also being studied. Headmounted 3D visualization system with operating microscopes which also provide a stereoscopic view on a screen, provide

better visualization, teaching and training, and integrated intraoperative OCT systems are also being developed for better monitoring of surgery. Robotic assisted surgery is also an innovation which is predicted to gain momentum in future [1,2,11,15]. All these advances and smart operating theaters are all good things in the pipeline, that all of us ophthalmic surgeons look forward to.

5. Expert opinion

Although laser cataract surgery has been developed, phacoemulsification remains the gold standard for cataract removal because various meta-analyses show that there are no discernible advantages to utilizing an expensive technology over conventional ultrasonography for cataract removal. Even though a laser can theoretically reduce ultrasonic power, cause less endothelial damage, better IOL centration, and less inflammation, phacoemulsification - when done correctly and with the right OVD and safety measures - remains the best option for both developed and developing nations. However, IOLs should provide best possible vision not only for distance, but for all distances. Many surgeons believe that there are no significant differences in visual outcomes, complications, safety, Qol between FLACs and conventional phaco, and FLACs is not superior, especially in terms of cost-effectiveness [12,13].

Funding

This paper was not funded.

Declaration of interest

The authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.

Reviewer disclosure

Peer reviewers on this manuscript have no relevant financial relationships or otherwise to disclose.

ORCID

Sana Nadeem (b) http://orcid.org/0000-0003-3994-8774

References

- Tsia LM, Afshari NA, Brasington CR, et al. Lens and cataract. Section 11. Basic and clinical science course. American academy of ophthalmology. San Francisco. 2022-2023:5–248.
- Yanoff M, Duker JS. Ophthalmology. Sixth ed. Philadelphia: Elsevier; 2023. p. 75–364.
- World Health Organization. World report on vision. 2024 [cited 2024 May 4]. Available from: https://www.who.int/publications/i/ item/9789241516570
- Burton MJ, Ramke J, Marques AP, et al. The Lancet Global Health Commission on Global Eye Health: vision beyond 2020. Lancet Glob Health. 2021 Apr;9(4):e489–e551. doi: 10.1016/S2214-109X(20)30488-5

- Chen J, Zhu Y, Li Z, et al. Age-period-cohort analysis of the global burden of visual impairment according to major causes: an analysis of the Global Burden of Disease Study 2019. Br J Ophthalmol. 2024 Apr 25:bjo-2023–324086. doi: 10.1136/bjo-2023-324086
- American Academy of Ophthalmology. Museum of the eye, cataract surgery: couching to phaco. 2024 [cited 2024 May 6]. Available from: https://www.aao.org/museum/exhibition-detail/cataractsurgery-couching-to-phaco-2
- 7. Davis G. The evolution of cataract surgery. Mo Med. 2016 Jan;113 (1):58–62.
- Lapp T, Wacker K, Heinz C, et al. Cataract surgery-indications, techniques, and intraocular lens selection. Dtsch Arztebl Int. 2023 May 30;120(21):377–386. doi: 10.3238/arztebl.m2023.0028
- Nagamoto TM. Origin of the capsular tension ring. J Cataract Refractive Surg. 2001 Nov;27(11):1710–1711. doi: 10.1016/S0886-3350(01)01202-0
- Malyugin B. Cataract surgery in small pupils. Indian J Ophthalmol. 2017 Dec;65(12):1323–1328. doi: 10.4103/ijo.IJO_800_17
- Sharma B, Abell RG, Arora T, et al. Techniques of anterior capsulotomy in cataract surgery. Indian J Ophthalmol. 2019 Apr;67 (4):450–460. doi: 10.4103/ijo.IJO_1728_18
- Hooshmand J, Vote BJ. Femtosecond laser-assisted cataract surgery, technology, outcome, future directions and modern applications. Asia Pac J Ophthalmol (Phila). 2017 Jul;6(4):393–400. doi: 10.22608/APO.2017159
- Narayan A, Evans JR, O'Brart D, et al. Laser-assisted cataract surgery versus standard ultrasound phacoemulsification cataract surgery. Cochrane Database Syst Rev. 2023 Jun 23;6(6):CD010735. doi: 10.1002/14651858.CD010735.pub3
- Srinivasan S, Tripathi AB, Suryakumar R. Evolution of operating microscopes and development of 3D visualization systems for intraocular surgery. J Cataract Refract Surg. 2023 Sep 1;49 (9):988–995. doi: 10.1097/j.jcrs.000000000001216
- Lindegger DJ, Wawrzynski J, Saleh GM. Evolution and applications of artificial intelligence to cataract surgery. Ophthalmol Sci. 2022 Apr 25;2(3):100164. doi: 10.1016/j.xops.2022.100164